欢迎光临
我们一直在努力

大数据的处理过程一般包括哪几个步骤-

大家好,我是小编,今天我来给大家讲解一下关于数据的处理过程一般包括哪几个步骤?的问题。为了让大家更容易理解,我将这个问题进行了归纳整理,现在就一起来看看吧。

文章目录列表:

大数据的处理过程一般包括哪几个步骤?
2.什么是大数据分析Hadoop

大数据的处理过程一般包括哪几个步骤?

大数据处理流程包括数据收集、数据存储、数据清洗和预处理、数据集成和转换、数据分析、数据可视化、数据存储和共享,以及数据安全和 保护等步骤。

1、数据收集

数据收集是大数据处理的 步。这可以通过多种方式进行,如传感器、网页抓取日志记录等。数据可以来自各种来源,包括传感器、社交媒体电子邮件、数据库等。

2、数据存储

一旦数据被收集,它们需要被存储在适当的地方以供后续处理。大数据处理需要使用分布式存储系统,如Hadoop的HDFS、Apache Cassandra等。这些系统具有高可扩展性和容错性,能够处理大规模的数据。

3、数据清洗和预处理

收集到的数据可能包含噪声、缺失值和异常值。再进行分析之前,需要对数据进行清洗和预处理,以确保数据的质量和准确性。这包括数据去重、去噪、填充缺失值等。

4、数据集成和转换

大数据通常来自不同的数据源,这些数据源可能具有不同的格式结构。再进行分析之前,需要对数据进行集成和转换,以确保数据的一致性和可用性。这可能涉及数据合并、数据转换、数据规范化等。

5、数据分析

数据分析是大数据处理的核心步骤。这包括使用各种技术和工具对数据进行统计分析、数据挖掘、机器学习等,以发现数据中的模式、关联和趋势。数据分析的目标是提取有价值信息知识,以支持业务决策和行动。

6、数据可视化

数据可视化是将分析结果以图表、图形、地图等形式展示出来,以便用户更直观地理解和利用数据。数据可视化可以帮助用户发现数据中的模式和趋势,以及进行更深入的分析和洞察。

7、数据存储和共享

在分析完成后,可以将结果存储在数据库、数据仓库或数据湖中,以便将来使用。此外,还可以将分析结果共享给其他团队个人,以促进合作和决策。

8、数据安全和 保护

在整个大数据处理流程中,数据安全和 保护是非常重要的。这包括对数据进行加密访问控制、身份验证等,以确保数据的机密性和完整性。同时,还需要遵守相关的法律法规,保护用户的 权益。

大数据介绍

1、大数据简介

大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。

2、结构

大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。

大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神化它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。

什么是大数据分析Hadoop?

随着大数据分析市场快速渗透到各行各业,哪些大数据技术是刚需?哪些技术有极大的潜在价值?根据弗雷斯特研究公司发布的指数,这里给出最热的十个大数据技术。

预测分析:预测分析是一种统计或数据挖掘解决方案,包含可在结构化和非结构化数据中使用以确定未来结果的算法和技术。可为预测、优化、预报和模拟等许多其他用途而部署。随着现在硬件和软件解决方案的成熟,许多公司利用大数据技术来收集海量数据、训练模型、优化模型,并发布预测模型来提高业务水平或者避免风险;当前最流行的预测分析工具当属IBM公司的SPSS,SPSS这个软件大家都已经很熟悉了,它集数据录入、整理、分析功能于一身。用户可以根据实际需要和计算机的功能选择模块,SPSS的分析结果清晰、直观、易学易用,而且可以直接读取EXCEL及DBF数据文件,现已推广到多种各种操作系统的计算机上。

NoSQL数据库:非关系型数据库包括Key-value型(Redis)数据库、文档型(MonogoDB)数据库、图型(Neo4j)数据库;虽然NoSQL流行语火起来才短短一年的时间,但是不可否认,现在已经开始了第二代运动。尽管早期的堆栈代码只能算是一种实验,然而现在的系统已经更加的成熟、稳定。

搜索和认知商业:当今时代大数据与分析已经发展到一个新的高度,那就是认知时代,认知时代不再是简单的数据分析与展示,它更多的是上升到一个利用数据来支撑人机交互的一种模式,例如前段时间的围棋大战,就是一个很好的应用、现已经逐步推广到机器人的应用上面,也就是下一个经济爆发点——人工智能互联网人都比较熟悉国内的BAT,以及国外legoogle、facebook、IBM、微软亚马逊等等;可以大致看一下他们的商业布局,未来全是往人工智能方向发展,当然目前在认知商业这一块IBM当属领头羊,特别是当前主推的watson这个产品,以及取得了非常棒的效果。

流式分析:目前流式计算是业界研究的一个热点,最近Twitter、LinkedIn等公司相继开源了流式计算系统Storm、Kafka等,加上Yahoo!之前开源的S4,流式计算研究在互联网领域持续升温,流式分析可以对多个高吞吐量的数据源进行实时的清洗、聚合和分析;对存在于社交网站博客、电子邮件、视 、新闻电话记录、传输数据、电子感应器之中的数字格式的信息流进行快速处理并反馈的需求。目前大数据流分析 有很多、如开源的spark,以及ibm的 streams 。

内存数据结构:通过动态随机内存访问(DRAM)、Flash和SSD等分布式存储系统提供海量数据的低延时访问和处理;

分布式存储系统:分布式存储是指存储节点大于一个、数据保存多副本以及高性能的计算网络;利用多台存储服务器分担存储负荷,利用位置服务定位存储信息,它不但提高了系统的可靠性、可用性和存取效率,还易于扩展。当前开源的HDFS还是非常不错,有需要的朋友可以深入了解一下。

数据可视化:数据可视化技术是指对各类型数据源(包括hadoop上的海量数据以及实时和接近实时的分布式数据)进行显示;当前国内外数据分析展示的产品很多,如果是企业单位以及政府单位建议使用 cognos ,安全、稳定、功能强大、支持大数据、非常不错的选择。

数据整合:通过亚马逊弹性MR(EMR)、Hive、Pig、Spark、MapReduce、Couchbase、Hadoop和MongoDB等软件进行业务数据整合;

数据预处理:数据整合是指对数据源进行清洗、裁剪,并共享多样化数据来加快数据分析;

数据校验:对分布式存储系统和数据库上的海量、高 率数据集进行数据校验,去除非法数据,补全缺失。

数据整合、处理、校验在目前已经统称为 ETL ,ETL过程可以把结构化数据以及非结构化数据进行清洗、抽取、转换成你需要的数据、同时还可以保障数据的安全性以及完整性、关于ETL的产品推荐使用 datastage就行、对于任何数据源都可以 处理。

  要了解什么是Hadoop,我们必须首先了解与大数据和传统处理系统有关的问题。前进,我们将讨论什么是Hadoop,以及Hadoop如何解决与大数据相关的问题。我们还将研究CERN案例研究,以 使用Hadoop的好处

  在之前的博客“ 大数据教程”中,我们已经详细讨论了大数据以及大数据的挑战。在此博客中,我们将讨论:

  1、传统方法的问题

  2、Hadoop的演变

  3、Hadoop的

  4、Hadoop即用解决方案

  5、何时使用Hadoop?

  6、什么时候不使用Hadoop?

一、CERN案例研究

  大数据正在成为组织的机会。现在,组织已经意识到他们可以通过大数据分析获得很多好处,如下图所示。他们正在检查大型数据集,以发现所有隐藏的模式,未知的相关性,市场趋势,客户偏好和其他有用的业务信息。

  这些分析结果正在帮助组织进行更有效的营销,新的收入机会,更好的客户服务。他们正在提高运营效率,与竞争对手组织相比的竞争优势以及其他业务利益。

  

什么是Hadoop –大数据分析的好处

  因此,让我们继续前进,了解在兑现大数据机会方面与传统方法相关的问题。

二、传统方法的问题

  在传统方法中,主要问题是处理数据的异构性,即结构化,半结构化和非结构化。RDBMS主要关注银行交易,运营数据等结构化数据,而Hadoop则专注于文本,视 ,音 ,Facebook帖子,日志等半结构化,非结构化数据。RDBMS技术是一种经过验证的,高度一致,成熟的系统许多公司的支持。另一方面,由于大数据(主要由不同格式的非结构化数据组成)对Hadoop提出了需求。

  现在让我们了解与大数据相关的主要问题是什么。因此,继续前进,我们可以了解Hadoop是如何成为解决方案的。

  

什么是Hadoop –大数据问题

   个问题是存储大量数据。

  无法在传统系统中存储大量数据。原因很明显,存储将 于一个系统,并且数据正在以惊人的速度增长。

  第二个问题是存储异构数据。

  现在,我们知道存储是一个问题,但是让我告诉您,这只是问题的一部分。由于我们讨论了数据不仅庞大,而且还以各种格式存在,例如:非结构化,半结构化和结构化。因此,您需要确保您拥有一个系统来存储从各种来源生成的所有这些种类的数据。

  第三个问题是访问和处理速度。

  硬盘容量正在增加,但磁盘传输速度或访问速度并未以相似的速度增加。让我以一个示例为您进行解释:如果您只有一个100 Mbps I / O通道,并且正在处理1TB数据,则大约需要2.91个小时。现在,如果您有四台具有一个I / O通道的计算机,则对于相同数量的数据,大约需要43分钟。因此,与存储大数据相比,访问和处理速度是更大的问题。

  在了解什么是Hadoop之前,让我们首先了解一下Hadoop在一段时间内的发展。

  Hadoop的演变

  2003年,道格·切特(Doug Cutting)启动了Nutch项目,以处理数十亿次搜索并为数百万个网页建立索引。2003年10月下旬– Google发布带有GFS(Google文件系统)的论文。2004年12月,Google发布了MapReduce论文。在2005年,Nutch使用GFS和MapReduce进行操作。2006年,雅虎与Doug Cutting及其团队合作,基于GFS和MapReduce创建了Hadoop。如果我告诉您,您会感到惊讶,雅虎于2007年开始在1000个节点的群集上使用Hadoop。

  2008年1月下旬,雅虎向Apache Software Foundation发布了Hadoop作为一个开源项目。2008年7月,Apache通过Hadoop成功测试了4000个节点的集群。2009年,Hadoop在不到17小时的时间内成功整理了PB级数据,以处理数十亿次搜索并为数百万个网页建立索引。在2011年12月,Apache Hadoop发布了1.0版。2013年8月下旬,发布了2.0.6版。

  当我们讨论这些问题时,我们发现分布式系统可以作为解决方案,而Hadoop提供了相同的解决方案。现在,让我们了解什么是Hadoop。

三、什么是Hadoop?

  Hadoop是一个框架,它允许您首先在分布式环境中存储大数据,以便可以并行处理它。 Hadoop中基本上有两个组件

  1、大数据Hadoop认证培训

  2、讲师指导的课程现实生活中的案例研究评估终身访问探索课程

  

什么是Hadoop – Hadoop框架

   个是用于存储的HDFS(Hadoop分布式文件系统),它使您可以在集群中存储各种格式的数据。第二个是YARN,用于Hadoop中的资源管理。它允许对数据进行并行处理,即跨HDFS存储。

  让我们首先了解HDFS。

  HDFS

  HDFS创建一个抽象,让我为您简化一下。与虚拟化类似,您可以在逻辑上将HDFS视为用于存储大数据的单个单元,但是实际上您是在分布式方式下跨多个节点存储数据。HDFS遵循主从架构

  

什么是Hadoop – HDFS

  在HDFS中,名称节点是主节点,数据节点是从节点。 Namenode包含有关存储在Data节点中的数据的元数据,例如哪个数据块存储在哪个数据节点中,数据块的复制位置在哪里等 。实际数据存储在Data Nodes中。

  我还想补充一下,实际上我们复制了数据节点中存在的数据块,默认复制因子是3。 由于我们使用的是商用硬件,并且我们知道这些硬件的故障率很高,所以如果其中一个DataNodes失败,HDFS将仍然具有那些丢失的数据块的副本。 您还可以根据需要配置复制因子。您可以阅读HDFS教程,详细了解HDFS。

四、Hadoop即解决方案

  让我们了解Hadoop如何为刚刚讨论的大数据问题提供解决方案。

  

什么是Hadoop – Hadoop即解决方案

   个问题是存储大数据。

  HDFS提供了一种分布式大数据存储方式。您的数据存储在整个DataNode的块中,您可以 块的大小。基本上,如果您拥有512MB的数据,并且已经配置了HDFS,那么它将创建128MB的数据块。 因此,HDFS将数据分为512/128 = 4的4个块,并将其存储在不同的DataNode上,还将在不同的DataNode上复制数据块。现在,由于我们正在使用商品硬件,因此存储已不是难题。

  它还解决了缩放问题。它着重于水平缩放而不是垂直缩放。您始终可以根据需要随时在HDFS群集中添加一些额外的数据节点,而不是扩展DataNodes的资源。让我为您总结一下,基本上是用于存储1 TB的数据,您不需要1 TB的系统。您可以在多个128GB或更少的系统上执行此操作。

  下一个问题是存储各种数据。

  借助HDFS,您可以存储各种数据,无论是结构化,半结构化还是非结构化。由于在HDFS中,没有预转储模式验证。并且它也遵循一次写入和多次读取模型。因此,您只需写入一次数据,就可以多次读取数据以寻找见解。

  Hird的挑战是访问和处理数据更快。

  是的,这是大数据的主要挑战之一。为了解决该问题,我们将处理移至数据,而不是将数据移至处理。这是什么意思?而不是将数据移动到主节点然后进行处理。在MapReduce中,处理逻辑被发送到各个从属节点,然后在不同的从属节点之间并行处理数据。然后,将处理后的结果发送到主节点,在该主节点上合并结果,并将响应发送回客户端

  在YARN架构中,我们有ResourceManager和NodeManager。ResourceManager可能会或可能不会与NameNode配置在同一台机器上。 但是,应该将NodeManager配置在存在DataNode的同一台计算机上。

  YARN通过分配资源和安排任务来执行您的所有处理活动。

  什么是Hadoop – YARN

  它具有两个主要组件,即ResourceManager和NodeManager。

  ResourceManager再次是主节点。它接收处理请求,然后将请求的各个部分相应地传递到相应的NodeManager,什么是大数据分析Hadoop在此进行实际处理。NodeManager安装在每个DataNode上。它负责在每个单个DataNode上执行任务。

  我希望现在您对什么是Hadoop及其主要组件有所了解。让我们继续前进,了解何时使用和何时不使用Hadoop。

  何时使用Hadoop?

  Hadoop用于:

  1、搜索 – Yahoo,亚马逊,Zvents

  2、日志处理 – Facebook,雅虎

  3、数据仓库 – Facebook,AOL

  4、视 和图像分析 –纽约时报,Eyealike

  到目前为止,我们已经看到了Hadoop如何使大数据处理成为可能。但是在某些情况下,不建议使用Hadoop。

好了,今天关于“大数据的处理过程一般包括哪几个步骤?”的话题就讲到这里了。希望大家能够对“大数据的处理过程一般包括哪几个步骤?”有更深入的认识,并且从我的回答中得到一些帮助。

赞(0)
未经允许不得转载: » 大数据的处理过程一般包括哪几个步骤-

评论 抢沙发

评论前必须登录!

 

登录

找回密码

注册

皖ICP备2022015559号-23